Rank four vector bundles without theta divisor over a curve of genus two

نویسنده

  • CHRISTIAN PAULY
چکیده

We show that the locus of stable rank four vector bundles without theta divisor over a smooth projective curve of genus two is in canonical bijection with the set of theta-characteristics. We give several descriptions of these bundles and compute the degree of the rational theta map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Base Locus of the Linear System of Generalized Theta Functions

Let Mr denote the moduli space of semi-stable rank-r vector bundles with trivial determinant over a smooth projective curve C of genus g. In this paper we study the base locus Br ⊂ Mr of the linear system of the determinant line bundle L over Mr, i.e., the set of semi-stable rank-r vector bundles without theta divisor. We construct base points in Bg+2 over any curve C, and base points in B4 ove...

متن کامل

Moduli of Vector Bundles on Curves in Positive Characteristic

Let X be a projective curve of genus 2 over an algebraically closed field of characteristic 2. The Frobenius map on X induces a rational map on the moduli space of rank-2 bundles. We show that up to isomorphism, there is only one (up to tensoring by an order two line bundle) semi-stable vector bundle of rank 2 with determinant equal to a theta characteristic whose Frobenius pull-back is not sta...

متن کامل

. A G ] 1 4 Ju l 2 00 6 Raynaud ’ s vector bundles and base points of the generalized Theta divisor

We study base points of the generalized Θ-divisor on the moduli space of vector bundles on a smooth algebraic curve X of genus g defined over an algebraically closed field. To do so, we use the derived categories Db(Pic(X)) and Db(Jac(X)) and the equivalence between them given by the Fourier-Mukai transform FMP coming from the Poincaré bundle. The vector bundles Pm on the curve X defined by Ray...

متن کامل

Theta divisors and the Frobenius morphism

We introduce theta divisors for vector bundles and relate them to the ordinariness of curves in characteristic p > 0. We prove, following M. Raynaud, that the sheaf of locally exact differentials in characteristic p > 0 has a theta divisor, and that the generic curve in (any) genus g ≥ 2 and (any) characteristic p > 0 has a cover that is not ordinary (and which we explicitely construct). 1 Thet...

متن کامل

Parametrization of Singθ for a Fano 3-fold of Genus 7 by Moduli of Vector Bundles

According to Mukai, any prime Fano threefold X of genus 7 is a linear section of the spinor tenfold in the projectivized half-spinor space of Spin(10). The orthogonal linear section of the spinor tenfold is a canonical genus-7 curve Γ, and the intermediate Jacobian J(X) is isomorphic to the Jacobian of Γ. It is proven that, for a generic X , the Abel-Jacobi map of the family of elliptic sextics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008